Logo-ijbsm
Int J Basic Sci Med. 2018;3(4): 178-187. doi: 10.15171/ijbsm.2018.31

Original article

The Effects of Zinc Oxide Nanoparticles on Enzymatic and Osmoprotectant Alternations in Different Moringa peregrina Populations Under Drought Stress

Leila Foroutan 1, Mahmood Solouki 2 * , Vahid Abdossi 1, Barat Ali Fakheri 2

Cited by CrossRef: 7


1- Al-Selwey W, Alsadon A, Alenazi M, Tarroum M, Ibrahim A, Ahmad A, Osman M, Seleiman M. Morphological and Biochemical Response of Potatoes to Exogenous Application of ZnO and SiO2 Nanoparticles in a Water Deficit Environment. Horticulturae. 2023;9(8):883 [Crossref]
2- Ghani M, Saleem S, Rather S, Rehmani M, Alamri S, Rajput V, Kalaji H, Saleem N, Sial T, Liu M. Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere. 2022;289:133202 [Crossref]
3- Prakash V, Rai P, Sharma N, Singh V, Tripathi D, Sharma S, Sahi S. Application of zinc oxide nanoparticles as fertilizer boosts growth in rice plant and alleviates chromium stress by regulating genes involved in oxidative stress. Chemosphere. 2022;303:134554 [Crossref]
4- Shahhoseini R, Azizi M, Asili J, Moshtaghi N, Samiei L. Effects of zinc oxide nanoelicitors on yield, secondary metabolites, zinc and iron absorption of Feverfew (Tanacetum parthenium (L.) Schultz Bip.). Acta Physiol Plant. 2020;42(4) [Crossref]
5- Faisal M, Faizan M, Alatar A. Metallic allies in drought resilience: Unveiling the influence of silver and zinc oxide nanoparticles on enhancing tomato (Solanum lycopersicum) resistance through oxidative stress regulation. Plant Physiology and Biochemistry. 2024;212:108722 [Crossref]
6- Hamada A, Radi A, Al‑Kahtany F, Farghaly F. A review: Zinc oxide nanoparticles: advantages and disadvantages. Journal of Plant Nutrition. 2024;47(4):656 [Crossref]
7- Najafi S, Razavi S, Khoshkam M, Asadi A. Effects of green synthesis of sulfur nanoparticles from Cinnamomum zeylanicum barks on physiological and biochemical factors of Lettuce (Lactuca sativa). Physiol Mol Biol Plants. 2020;26(5):1055 [Crossref]
8- Abdelghany W, Mohamedin A, Abo-Elyousr K, Hussein M. Control of bacterial soft rot disease of potato caused by Pectobacterium carotovorum subsp. carotovorum using different nanoparticles. Archives of Phytopathology and Plant Protection. 2022;55(14):1638 [Crossref]
9- Sorahinobar M, Saadati F, Khaksar S. Zinc oxide nanoparticle biofortification of lentil seedlings enhances plant growth and zinc bioavailability in rats. Sci Rep. 2024;14(1) [Crossref]
10- Rajpal V, Prakash S, Mehta S, Minkina T, Rajput V, Deswal R. A comprehensive review on mitigating abiotic stresses in plants by metallic nanomaterials: prospects and concerns. Clean Techn Environ Policy. 2024;26(11):3595 [Crossref]
11- Seleiman M, Al-Selwey W, Ibrahim A, Shady M, Alsadon A. Foliar Applications of ZnO and SiO2 Nanoparticles Mitigate Water Deficit and Enhance Potato Yield and Quality Traits. Agronomy. 2023;13(2):466 [Crossref]
12- Verma N, Kaushal P, Gahalot D, Sidhu A, Kaur K. Mechanistic Aspect of Zinc Oxide Nanoparticles in Alleviating Abiotic Stress in Plants — A Sustainable Agriculture Approach. BioNanoSci. 2023;13(4):1645 [Crossref]
13- Rawat N, Singla‐Pareek S, Pareek A. Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiologia Plantarum. 2021;171(4):653 [Crossref]
14- Das D, Bisht K, Chauhan A, Gautam S, Jaiswal J, Lohani P. Zinc-Chitosan-Salicylic Acid Nanoparticles Play a Dual Role by Providing Drought Tolerance and Yield Enhancement in Wheat (Triticum Aestivum L.). SSRN Journal. 2022; [Crossref]
15- Pandya P, Kumar S, Patil G, Mankad M, Shah Z. Impact of ZnO nanopriming on physiological and biochemical traits of wheat (Triticum aestivum L.) seedling. CABI Agric Biosci. 2024;5(1) [Crossref]
16- R, Kausar A, Hussain S, Javed T, Zafar S, Anwar S, Hussain S, Zahra N, Saqib M. Zinc oxide nanoparticles as potential hallmarks for enhancing drought stress tolerance in wheat seedlings. Plant Physiology and Biochemistry. 2023;195:341 [Crossref]
17- Sundararajan N, Habeebsheriff H, Dhanabalan K, Cong V, Wong L, Rajamani R, Dhar B. Mitigating Global Challenges: Harnessing Green Synthesized Nanomaterials for Sustainable Crop Production Systems. Global Challenges. 2024;8(1) [Crossref]
18- Alabdallah N, Hasan M, Hammami I, Alghamdi A, Alshehri D, Alatawi H. Green Synthesized Metal Oxide Nanoparticles Mediate Growth Regulation and Physiology of Crop Plants under Drought Stress. Plants. 2021;10(8):1730 [Crossref]
19- Ndou N, Rakgotho T, Nkuna M, Doumbia I, Mulaudzi T, Ajayi R. Green Synthesis of Iron Oxide (Hematite) Nanoparticles and Their Influence on Sorghum bicolor Growth under Drought Stress. Plants. 2023;12(7):1425 [Crossref]
20- Al-Selwey W, Alsadon A, Ibrahim A, Labis J, Seleiman M. Effects of Zinc Oxide and Silicon Dioxide Nanoparticles on Physiological, Yield, and Water Use Efficiency Traits of Potato Grown under Water Deficit. Plants. 2023;12(1):218 [Crossref]
21- Das D, Bisht K, Chauhan A, Gautam S, Jaiswal J, Salvi P, Lohani P. Morpho-physiological and biochemical responses in wheat foliar sprayed with zinc-chitosan-salicylic acid nanoparticles during drought stress. Plant Nano Biology. 2023;4:100034 [Crossref]
22- Rehman A, Weng J, Li P, Shah I, Rahman S, Khalid M, Manzoor M, Chang L, Niu Q. Green synthesized zinc oxide nanoparticles confer drought tolerance in melon (Cucumis melo L.). Environmental and Experimental Botany. 2023;212:105384 [Crossref]
Indexing Info:
Member of: